ON THE NEWTON POLYGONS OF TWISTED L-FUNCTIONS

OF BINOMIALS

SHENXING ZHANG

ABSTRACT. Let x be an order ¢ multiplicative character of a finite field and
f(z) = 2% + X\z° a binomial with (d,e) = 1. We study the twisted classical
and T-adic Newton polygons of f. When p > (d — e)(2d — 1), we give a lower
bound of Newton polygons and show that they coincide if p does not divide a
certain integral constant depending on p mod cd.

We conjecture that this condition holds if p is large enough with respect
to ¢,d by combining all known results and the conjecture given by Zhang-Niu.
As an example, we show that it holds for e = d — 1.
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1. INTRODUCTION

= 00 ~J U1 U i W = =

1.1. Background. Fix a rational prime p. For ¢ = p® a power of p, denote by
F, the finite field with ¢ elements, Q, the unramified extension of QQ, of degree
a and Zg its ring of integers. Let f(x) € F,[z] be a polynomial of degree d with
Teichmiiller lifting f(z) € Zy[z]. Let x : Fx — C) be a multiplicative character
and w : F — Zy the Teichmiiller lifting. Then we can write xy = w™" for some

0<u<q-—2.

For a non-trivial additive character ¢y, : Z, — C; of order p™, define the twisted

L-function

Lu(3> fa wm) = exp <Z Skm(fa wm)i:> 5
k=1
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where Sk . (f, ¥, is the twisted exponential sum

Sku(fsbm) = Z Um (Tr@qk/Qp (f(‘%))) w™ (Nquk/Fq (CC)) :

X
a:EIFqk

If p1d, then L,(s, f,¢n) is a polynomial of degree p™~1d by Adolphson-Sperber

[ , , ], Li [1i99], Liu-Wei [ ] and Liu | ].
We will use the twisted T-adic exponential sums developed by Liu-Wan | ]
and Liu [ , ]. Define the twisted T-adic L-function
oo k
Lu(s, £,T) = exp <Z Shalf, T)‘;) € 1+ sZ,[ ][],
k=1

where Sy, (f,T') is the twisted T-adic exponential sum

Sk,u(f, T) _ Z (1 n T)Trqu /Qp(f(ﬁ))wfu (Nquk JE, (ZE)) )
zE]F:,C
Then Ly (s, f,%m) = Ly (s, f,mm) where m,, = ¥ (1) — 1.
Denote by

Cu(s, /,T) = [ [ Lul@’s, £,T) € 1+ sZ4[T][5]
j=0

the characteristic function, which is T-adic entire in s. Then

Since the 74P~ Y_adic Newton polygon of C,(s, f,mm) does not depend on the
choice of 1,,, we denote it by NP, ,.(f). Denote by NP, r(f) the T¢P~Y_adic
Newton polygon of Cy(s, f,T). As shown in | ] and | I, NP, (f) lies
over the infinity u-twisted Hodge polygon H [%‘? A which has slopes

n

b
1
_L ¥ . 11
d*M@—luﬂFMRGN (1)

If we write 0 < 59 < -+ < 5pm-14_1 < 1 the g-adic slopes of Ly (s, f,m,), then the
g-adic slopes of C\,(s, f, T, ) are

j4si;, 0<i<p™l'd—1,57€N.

That’s to say, the wzﬁfpfl)—adic Newton polygon of L, (s, f, T ) is the restriction of
NPy (f) on [0,p™~'d], and it determines NP, ,,,(f).

The prime p is required large enough in the following results. When y = w™" is
trivial, in | ] and | ], they gave a lower bound of the Newton polygons.
They defined a polynomial on the coefficients of f, called Hasse polynomial. If the
Hasse polynomial is nonzero, then the Newton polygons coincide this lower bound.

Assume that f(z) = 2% + Az is a binomial. Since the exponential sums can be
transformed to the twisted case when d and e are not coprime, we assume (d,e) = 1
in this paper. When u = 0, we list the known cases here.

u

e p =1 mod d, it’s well-known that the Newton polygons coincides the Hodge

polygon.
e e =1, see | , §1, Theorem], | , Theorem 1.1] and [ , Theo-

rem 1.1].
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ec=d—1,p=—1modd, see | ]
e ¢ =2,p=2modd, see | ]

For arbitrary u, Liu-Niu [ ] obtained the Newton polygons when e = 1. Zhang-
Niu | | also give a conjectural description of the Newton polygons when p =
e mod d.

1.2. Notations. We list the notations we will use.

i,7,v,w, k, £, n indices.

f(z) = 2%+ \x° € Fy[z] a binomial with d > e > 1,(d,e) = 1,A # 0.
w™:Fy — CJ, where w is the Teichmiiller lifting and 0 < u < ¢ — 2.
H[%‘?dm, the infinity u-twisted Hodge polygon with slopes in (1.1).

ﬁ the order of w™*, then u = @ for some (u,c) = 1.

P, ¢.q a polygon with slopes w(%), defined in (1.2).

b the least positive integer such that p’u = wmod (¢ — 1) (equivalently,

p® =1 mod c).

0 <wu; <p—1suchthat u = ug+uip+---+uqe_1p* ", u; = ups.

T the minimal non-negative residue of x modulo d.

dp takes value 1 if P happens; 0 if P does not happen.

I,={1,...,n}, Iy ={0,1,...,n}.

Sp (resp. S;) the set of permutations of I, (resp. I}}).

Ct,n the minimum of Y 1" je~!(pi — 7(i) +t) for 7 € S} and S}, the set

of 7 € S} such that the summation reaches minimal. Set C;_; = 0 for

convention.

o R = e lpit+a), 1o = e (t—a—1i), see Proposition 2.1. We will
drop the subscript « if there is no confusion.

e C; , o the maximal size of {z €| Ria+rr)a > d} for 7 € . We will
drop the subscript « if there is no confusion.

oy, =e Ypi—7(i)+1t), x]; = d~ ' (pi—7(i)+t—ey],;) the unique solution

ofde+ey=pi—7(i)+twith0<y<d-—1.

R ks Bue,da the Hasse numbers defined in (1.3).

p the minimal non-negative residue of p modulo cd.

H, cped € Z a constant defined in (3.1).

E(X) the p-adic Artin-Hasse series, see (2.1).

7 a T-adic uniformizer of Q,[T7] given by E(w) = 1+ T, with a fixed

d(q — 1)-th root T

E¢(X), see (2.2).

M, = 5 +N.

L, a Banach space, see (2.3).

B, a subspace of L,, see (2.4).

B=DBy®Bp @@ Bpp-1y.

P Ly = Ly-1,, defined as 9 (ZveMU byX") = ZveMpflu bpu X"

o € Gal(Q,/Q,) the Frobenius, which acts on £, via the coefficients.

V=0c"looE;:B, — B,-1, the Dwork’s T-adic semi-linear operator.

¢n, the coefficients of det(1 — Us | B), see (2.6).

s =pFumod g —1 with 0 < s, < g —2.

C =

= 7(v7%+i)7(w’%+j)) the matrix coefficient of ¥ on B, see (2.7).
e T the sub-matrix of T' defined in (2.7).
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A®) = ANT® the sub-matrix of a principal minor A of T'.

A,, the set of all principal minor A of order bn, such that every A®) has
order n.

¢(n) € NU{+oo0} the minimal x + y where dx + ey = n,z,y € N.
V(2 i, 2 )0 5O (2.9).

(@) ==a(@ = 1)~ (= n+1),(z) =1 the falling factorial.

1.3. Main results. In this paper, we give an explicit lower bound of Newton
polygons of twisted L-functions of binomial f(z) = 2% + Az¢. We reduce the Hasse
polynomial to a certain integer (3.1). Then p > (d —e)(2d — 1) does not divide this
constant, if and only if this lower bound coincides the Newton polygons. Finally,
we show that this condition holds for e = d — 1.

Denote by P, 4 the polygon such that

n(n —1)

Pu,e,d(n) = 2d

b
1
-1 kZ:l(nuk +(d=e)Cun), €N (12)

Denote by w(n) = P, e a(n+1) — Pyca(n). Then

n 1 b

w(n) = 7 + m kz:l(uk +(d— €)(Cuk7n — Cuk,n—l))-

This polygon lies above the Hodge polygon H[%C:d] , With same points at dZ, and
w(n +d) =14+ w(n). Moreover, we have w(n) < w(n+ 1) if p > (d —e)(2d — 1).
See Proposition 2.1.

Theorem 1.1. Assume that p > (d —e)(2d —1). Then NP, r(f) lies above P, . 4.
As a corollary, NP, n,(f) lies above Py, ¢ 4.

Define
n 1 d—2 b
By = Z sgn(7) H 567'7117" Ryed = H H P k- (1.3)
TESS i=0 = Uk,1 I Uk n=0 k=1

Up N

Theorem 1.2. Assume that p > (d —e)(2d — 1). Then

NPu7m(f) = NPu,T(f) = Pu,e,d (14)
holds if and only if huca € Z,, if and only if pt Hy c p e d-

Here Hy cped € Z is a constant defined in (3.1) and p is the minimal positive
residue of p modulo c¢d. Thus we have the following corollary.

Corollary 1.3. Assume that (1.4) holds for

¢ —1
a.m.p.f(x) = 2 4+ da* € Fyola]u = P
where b | a, A\ # 0 and p > (d — e)(2d — 1). Then
(1) H;L,c,p,e,d ?é 0.
(2) For any
ra’ 1
a/7m/’p/’f/(l,) — .’Ed + )\/xe c ]Fp/a/ [lL’],U/ _ u,
c

where b | a,\ # 0 and p’ > (d — e)(2d — 1), we have (1.4) if p’ = p mod cd
andp' > Hy cpe.d-
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(3) As p’ = pmod cd tends to infinity, the polygons NP, ., (f) and NP, r(f)
tend to H[%de] u» which only depends on p,c,p,d.

The following result extends [ ], as they considered the untwisted case with
an additional condition p = —1 mod d.

Theorem 1.4. Assume that e =d—1. We have NP, ,,,(f) = NP, 1(f) = Py,e.a if
p>c(d®—d+1).

We give the following conjecture, which generalizes the conjecture in | ]
Note that hy e q may be zero since S;, ,, may be empty, so we require that p is
large with respect to ¢, as in Corollary 1.3 and Theorem 1.4.

Conjecture 1.5. If p is large enough with respect to c,d, then NP, ..(f) =
NPy 7(f) = Puc,d-
2. THE LOWER BOUND

2.1. The property of the lower bound polygon. For any integer ¢, we denote

We set C,_1 = 0 for convention. For any integer o, we denote
Rio=etpit+a), ria=el(t—a—i)
and
Ct,n,oc = max# {Z S I; | Ri,a + Tr(i),a > d} .

Proposition 2.1. (1) For any «, we have

n

Ct,n = Z(Ri,a + Ti,a) - dCt,n,a-

i=0
(2) For any o, we have
Cintda=0d—14+Cipna, Cinta=Cin.
Thus w(n+d) =1+ w(n) and P, ¢ q(dn) = H[Cf)‘fdm(dn).
(3) If p> (d —e)(2d — 1), we have w(n) < w(n+1).

Proof. We omit the subscript « in this proof for convention.
(1) It follows from

e t(pi —7(i) +t) = Ri + 1) — dOR, 4, 1y >d-
(2) We have
Cipn = Tné%)g#{z €EL|R >d—r.3)}.
Note that
{Ri|iell 4} ={R;|ie;}u{0,1,...,d -1},
{d=riliell s} ={d—ri|iel}}u{d1,...,d—1}.

We may drop the 0 and d since they do not affect the size. Apple Lemma 2.2 (d—1)
times, where ag = by = j in j-th time, then we get C; yq =d — 14+ Cy .
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Since
n—+d d—
> (Ritri) = EZ )
1=n-+1 7=0

we have Cy pyq = Ct,n. Thus w(n +d) = 14+ w(n).
Note that Ct ntd = Ctp also holds for n = —1. Hence Cig4y,—1 = 0 and
Puea(dn) = Hg 4 ,(dn).
(3) Denote by 5 =R, +r,>d. For any 7 € S, write i = 7(n), j = 77 !(n) and
71 = (ni)7. Then 7 (n) =n, 71(j) =i and
S+#{iel_ | |Rit+rne =d} —#{i €| Ri+7r.) >d}
=0+ O0R;+ri>d — OR;4ry>d = OR,+ri>d-
If this is —2, then 2d > R, +r, + R;+r; > 2d, that’s impossible. Thus 6+ Cy 1 —
Ct,n Z -1
Any o € §7_, can be viewed as an element oy € S} fixing n. Thus
5+#{i€[:;_1 | Ri+ro'(i) Zd} :#{ZEI:L | Ri+r01(i) Zd}
and then 6 + Cy -1 < Cy .
Now
Ot,n - Ct,n—l
:Rn +rn — d(Ct,n - Ct,n—l)
=e l(pn—n+1t)+d(d+Cin-1—Cip)

lies in [—d,d — 1]. Therefore,

b
1 d—e
= — —_— - 2 — —
d + bd(p — 1) kz:l(cuk,n Cuk,n 1+ Cuk,n 2)
Ll @d-9t-2)
4T dp-1 7
since p > (d —e)(2d — 1). O

Lemma 2.2. Let A = {ag,...,am} and B = {by,...,by} be two multi-sets of
integers. Assume that ag > by and for any i > 0, b; > ag or b; < by. Then

Helgi{#{ielj; | a; Zb‘r(i)} =1+ %%X#{iEIm | a; zbg(i)}.
Proof. Every permutation in 5, can be viewed as a permutation in .S} fixing 0, thus

“>” holds trivially. Write i = 7(0), j = 771(0) and 7, = (0i)7. Then 71(0) = 0 and
71(j) = ¢. Thus

#{Z err |a; > le(i)} — #{Z el |a; > b.,.(i)}
=1+ 6aj2bi - 5%2()0 - 6(102171"

If this is negative, then ag > b; > a; > by, which is impossible. Thus “<” holds. [
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2.2. The twisted T-adic Dwork’s trace formula. This part is almost the same
with | , 2,3]. Denote by

E(X) = exp <§:p—ixp"'> = i A X" € Z,[X] (2.1)

i=0 n=0
the p-adic Artin-Hasse series. Then A\, = 1/n! if n < p. Denote by

Ef(X) = E@X")E(rAX) =) 7 X" (2.2)
n=0
Then .
=Y AN A,
where (z,y) runs through non-negative solutions of dx + ey = k.
Denote by M,, = qful + N. Define

L, = { > bymiX?

veEM,,

b, € Zq[[wan]}} (2.3)

and

B, = { > bmiXUeL,

vEM,,

ord,b, — 400 as v — —1—00} . (2.4)

Define a map
i Ly — Ly-1y
DX Y bpX (2.5)
vEM,, veM, 1,

The power series Ef defines a map on B,, via multiplication. Let o € Gal(Q,/Q))
be the Frobenius, which acts on £, via the coefficients. Then the Dwork’s T-adic
semi-linear operator ¥ = o~! 01 o Et sends B, to By,-1,. Hence ¥ acts on

b—1
B:= @ BpLu
=0

We have a linear map
a—1

ve =yo [T EF (X7
i=0
on B over Zy[m @D ] Since ¥ is completely continuous in the sense of | ], the
following determinants are well-defined.
Theorem 2.3. We have
Cu(s, f, T) = det (1 — Uls ‘ Bu/Zq[[ﬂdle)]]) .

Thus the T-adic Newton polygon of C,(s, f,T) is the lower convex closure of

(m ll)ordT(cabn)> , neN,

where
o

det (1 ~ s ‘ B/zp[[ﬂm]]) =3 (~1)"ens™ (2.6)

=0
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Proof. See | , Theorem 4.8], | 1 , Theorems 2.1, 2.2] and | )
Theorems 2.1, 5.3]. O

Write s, = pku mod ¢ — 1 with 0 < s, < q¢—2. Then sp_p = s_x = ugp +ur+1p+
c b Upgqo1p®T L Let &1, ..., &, be a normal basis of Qg over Q,. The space B has
a basis

éX %Jri
{ﬁv(w ) }(im,k)eNxIaxIb
1 .
over Z,[r@@D]. Let I' = (7(U’%+i)’(w’%+j)>leaxlb be the matrix of ¥ on B
with respect to this basis. Then
o 1™ o ... 0
0o o0 I® 0
r= : , (2.7)
0 0 0 re-u
r o o 0

where

(k) _ ( Shet e L )
r Vv, 5L i), (w, 2k +4) NxI,

Hence we have
o0

det (1 ~ s ] B/Zp[[widwl—l)]]) = det(1 —Ts) = 3 (~1)""cpns™
n=0
with ¢, = > det(A), where A runs through all principal minors of order n, see
[ ]. Denote by A®) = ANT®*) as a minor of I'®). If A has order bn, but the
order of some A®) is not n, then det(A) = 0. Denote by .A,, the set of all principal
minors of order bn, such that every A%*) has order n. Then

b
e = 3 det(4) = (=)= 37 TT det(a®). (2:8)

AcA, AcA, k=1
Theorem 2.4. Ifp > (d —e€)(2d — 1), then
ord,(det(A)) > ab(p — 1) Py e.a(n + 1)
for any A € Ay
Proof of Theorem 1.1. By Theorem 2.4 and (2.8), we have
ord(cabn) > ab(p — 1) Py e,q(n).

Thus NP, 7(f) lies above P, . 4 by Theorem 2.3. Note that NP, ,,,(f) > NP, r(f)
by definition. Therefore, NP,, ,,,(f) also lies above P, ¢ 4.

2.3. Estimation on c¢,. Denote by
¢(n) =min{z +y |dr +ey =n,z,y € N} € NU{+o0}.

Here the minimal element in @) is regarded as +oo. For i,j € N, k € I, define

Sk—Sk—1 | j—i

— —dg-1 T
7(55:11 +i gt +7) =m Ay ¢ Vpi—jtu_y- (2.9)

Then ) )
o~ o _ . R
w V(e ey T > Vo, 2B i) (w0, 2 4) S0

—1
4 uel,
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and

ordr (10, 25 4 2 000 (s )

_ P (2.10)
Sk — Sk-1 J—1 .
RO + + o(pi — j + u_p).
Lemma 2.5. For any 7 € S} and integer t,
n _ 1 1
S o(pi— (i) +1) > d”! ((p);‘(”” +(n+1)t+ (d - e)C’tm) .
i=0

Proof. We may assume that pi — 7(i) +t € dN+ eN for each i. One can easily show
that

o(k) = d~! (k; +(d— e)ﬂ)
and the minimum arrives at
(z,y) = (d*l(/@ - eﬂ),ﬂ) :
Thus
Gpi—j+t)=d" (pi—j+t+(d—e)m>. (2.11)
The result then follows easily. O

Lemma 2.6. Assume a; = Gy and by = by, for any i € I,q. Then

max #{Z € Ipa | a; > b.,-(i)} = d max #{Z €ly|a; > bg(i)} .
TESmd oESm

Proof. We may assume that there exists some k such that: ax > by and for any
1 # k, by > ap or b; < bi. Otherwise both sides should be zero. We may assume
that k& = m for simplicity. Apply Lemma 2.2 d times, where ag = am;i, bg = by in
i-th time, we get
max # {z €lmala; > br,(i)} = d + max # {z €lpg—mZ|a; > bT(i)},
T md T
where 7 runs through permutations on I,,4 — mZ. Since

max #{i €ly|a; > ba/(i)} = 1+max#{i €L, —{m}|a; > bg(i)}

by Lemma 2.2, where o runs through permutations on I, — {m}, the result is
reduced to
max # {z € Lpg—mZ | a; > bT(i)} = dmax # {z el —{m}|a; > bq(i)}.

Denote by A(mfl)H,j = Gmi+j and B(mfl),H,j = bmi+j;1 S _j S m — 1. Then
A; = Aiym-1,B; = Biym—1 and the equation above becomes

max # {Z S I(m—l)d | A; > B'r(i)} =d max # {Z €l | A; > Bo(i)}-
TES(m—1)d 0ESm—1

The result then follows by induction on m. ([

Lemma 2.7. For any i € N x I, we write t = (i',i"). Then for any permutation
Ton It X I,

S o T 0 2 7

i€lx X1,

((p —Dn(n+1)
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Proof. By Eq. (2.11), we only need to show that
min Z e~ tpi—7(i) +t) = aCl p.

ielxx1I,

By Proposition 2.1, it can be reduced to
max#{zel*xl | Rir o + 71 (i), >d}—aCtna
This follows from Lemma 2.6. O

Proof of Theorem 2.4. This proof is similar to | , Theorem 3.2]. Denote by R
the set of indices of A and

R®) x {k} =RN(Nx I, x {k}), RO =R®,
Then #R*) = a(n + 1),

AR = ( . )
Y, =l i), (w, 225 45) (i,0)ERE=D) (j,w)ERK)
and
b
det(A) = [] det(A®) =" sen(r) [] 7ir):
k=1 T i€R
where 7 runs through permutations of R such that 7(R*~1) = R(*). Here,

Ordﬂ' (H 7’£,T(i)> > S;-{

i€R
by (2.10), where

Y Y (=D = e)e ol = () +u)

k=1 jeR (k1)
by Eq. (2.11). By Lemma 2.7,
S%r > ab(p — 1)Py e.a(n + 1),

where N = T* x I, x I,. By (2.8), we only need to show that for any permutation
7 of R # N such that 7(R*~1) = R¥) there is a permutation o of A’ such that
o(NE=D) = N*) and S7 > S,

Assume #(R\N) = m. Write T = (M\R) U7 }(R\N), then #T = 2m and
MT =NNr"YNNR). Thus 7(M\T) C N. Note that for i € R\N,j € N\R,
i’ > n+1 > j'+1. We can choose a permutation o of N such that o(N*~1) = A/(*)
and 0 = 7 on N\T. Then

d(Sr — S%)
(x- s )oY ¥ w-ormemre
IER\N  ieN\R k=1icTnN (k)

>m(p—1) —2m(d —e)(d—1) > 0.
The result then follows. O
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3. THE NEWTON POLYGONS

Lemma 3.1. The Newton polygon NP, (f) lies over NPr(f). Moreover, if the
equality holds for one m, then it holds for all m.

Proof. See | , Theorem 2.3] and [ , Theorem 5.5]. O

Proof of Theorem 1.2. (1) Since w(d + 1) = 1+ w(i), both of NP, ,,,(f) and P, c 4
across points (di,Hﬁd]’u(di)), we only need to show that NP, ,,,(f) = Py..q on
[1,d — 1]. By Lemma 3.1, we may assume that m = 1.

Assume 0 <n < d — 2. Recall that S7,, is the set of 7 € S}, such that

#{i€ | Ria+7r()a>d} =Cipa

and every pi —7(i)+t € dN+eN. It’s equivalently to say, the equality in Lemma 2.5
holds. Recall that

Yo, =e tpi—71(@)+1t), xi;=¢(pi—71()+1t) -y,

Denote by m the right hand side in Lemma 2.5. Then we have

n
det(’)/pi_j_;'_t)i’je]; =" Z sgn(T) H /\Iz'b)\yz'szz—l
1=0

n
< 1
Eﬂ'm)\vt’" E Sgn(T) I I ﬁ mOd ’/T'Tn-"_l7
resy., i=o TtiYti

where
n

n
Vin = Zyzl = Z(Ri,a + Ti,a) - dct,n,a
i=0 i=1
is independent on 7 € S;.

Recall that S; > S in the proof of Theorem 2.4. Then modulo 7P~V Pu.c.a(nth)+1
we have

Cab(n+1) = Z det(A) = det((%g‘)i,je/\/)
AG.Aa(n+1)
b
= +Nm (H det (’y(?fJ“iuzslifj))i,jeI;)
b
= £Nm (H det(’ypiﬂuk)i,jel,i)
k=1
b
= (P~ DPuca(n+ Ny (H S\U'“k’"hn,k>
k=1
by (2.8), (2.9), [ , Lemma 4.4] and | , Lemma 3.5]. Hence we get the first

assertion by replacing w by 7.
(2) Denote by t; the minimal non-negative residue of p~*u modulo c¢. Then
Up = w. Write p the minimal positive residue of p modulo c¢d and p = cdl+p.

Denote by

Ur1P — bk —— . pi — 7(i) + ug —eyy,
up = e yfw = —e 1(pi —7(i) + ug), X;k,i = d et
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Then
up = tp1dl + Uk, Yy, i = Yapio Topi = (€0 + tep)0+ X5, 5
It’s easy to see that x7 . < p and zI . < p. Since

ug,? Uk 5
)z Al
we have x7, ; > —e. Note that y/; does not depend on £. Denote by
b d-2 n
Hycped= H H Z sgn(T) H (d-1) [d—l—y’ } X (cd)P—l—xﬁk,i
k=1n=07€S2 i=1 Uk (3.1)

" (_p(cz+tk+1) tp— 1) c 7.
ed [pil*x;kvi}

Then
Hu,c,p,e,d
b d—2 "
= H Z sgn(T)H(df 1)[d_1_yT ] x (ed)P™ ¥
k=1n=071€Sg i=1 up,i
X ((ci+tgr1)l+p—1) [pilixT ]
gt
b d—2 n
=hu.c.d H H H(d - 1)!(Cd)p_l_xs’“’i ((ci+tir)l+p—1)! mod p
k=1n=0i=1

Note that d — 1, (¢i + tg41)f + p — 1 < p. Thus
NPu,m(f) = NPu,T(f) = Rt,e,d P Jf H;J,,c,p,e,d
for p > (d —e)(2d — 1). O

Proof of Corollary 1.3. Since p { Hy, cped, We have H, .peca # 0. Hence p' {
H, cpea forany p’ > H, cpeq. Note that

b 1 b
Su= S
k=1 k=1
thus H[%Od] . only depends on p, ¢, p,d. Since

b
) i (d— yn(d ~ 1)
Pacal) = () = a5 > oy S 0, 55—
k=1

tends to zero as p tends to infinity, the result then follows. O

Example 3.2. Assume that p = 1 mod d and d | ui for all k. Write p = dk + 1
and ¢t = ug. Then

RZ‘ = Ri,O = 6712'7 Rz =Ti0 = —671’6'7 Ct,n =n, S;)L = {].}

and zy,; = @%.W,ytlji = 0. Since
-1
" —1)i+u
hin e = (H ((p 21 k)!) € ZY,
i=0

we obtain that the Newton polygons coincide H, [%f du
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4. THE CASEe=d —1

If pi — 7(i) +t ¢ dN + eN for some i, then 27, < 0. Set 1/k! = 0 for negative
integer k. Then

n

bk = Z SgH(T)H%

yr 1
rese i=1 Uk T Ui

e
where Sf,, the set of 7 € S such that the size of {i € I} | Ri.o + 77(;),a > d} is
Ct,n,oz-
Lemma 4.1. Denote by c(j) = (—aj + B) ;-

(1) If u; = av; + B for any i, then the matriz

n—j

() - @i+ 1) oe e = (00 (4.1)

>0§an

by third elementary column transformations.
(2) If u; = av; + B mod p for any i, then (4.1) holds by third elementary column
transformations, modulo p.

Proof. (1) Write
J
(az + B) th T+
t=0

then c¢o(j) = ¢(j) and
(i) - (Vi )y

J
= th(j) (i ) ity
=0 ! (4.2)
J
= th(]) (v + n)[n—j+t] :
t=0
Hence by third elementary column transformations,
((Ui)[j] - (vi + n)[n—j]) = (c(j) - (vi +n)[n—j]) = (C(j)”?ﬂ.) :
(2) In this case, (4.2) holds modulo p. The result then follows easily. O

Proof of Theorem 1.4. Since p > ¢(d? —d+ 1), we have p > (d—e)(2d — 1). Denote
by t = wu and t; the minimal non—negatlve residue of p~*u modulo c¢. Then
t:M If ¢ > 1, thent>p( >d(d—1)andt<@§p—d(d—1).
If c=1, then t = 0.

Assume that 0 < n < d — 2. Denote by

Ri=R,;=el(pi+t)=—pi—t=—pi—t+L4d

and
=T =—e =1
Then
{d=r;|iell]}={d,d—1,...,d—n}.
We have

Cin=#{ic€l’|R;>d—n}
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and
Se={reS|Ri+7(i) >dfor R; >d—n}.
For R; < d —n, we have R; + 7(¢) < d and

v, =pit+t—Lie—7(i), y;;=-—pi—t+ld+T7(i);
for R; > d —n, we have R; + 7(i) > d and
vy, =pit+t—Liete—7(i), yi;=-pi—t+Llid—d+7(i).
If 7 ¢ Sy, there is i such that y7;, < 0 or 27, < 0. Denote by
(g U_){(pi—&—t—&e,—pi—t—i—&dL itR, <d—n
v (pi+t—tlie+e —pi—t+4d—d), ifR;,>d—n.
Then

1

hn,k = det ( )
(u; — j)N(v; +.7)'

Apply Lemma 4.1(2) with a = —d~'e, 3 =t(1 — d~'e), we obtain that

nk: Huz Uz+n

(A7 e(G =) +1),- det( 0 J)

If

<
I
o

If

I
<

(d'e(j —t) + t)[j] : H (v; —vj) mod p.
J 0<i<j<n

IfR, <d—n,thenv; =R; >0;if R, >d—n, thenv, +n=R; —d+n > 0.
Hence 0 < v; +n < d — 1 are different and (v; +n)!, (v; —v;) € Z) if i # j. Note
that u; = ¢; — R; or ¢; — R; +e. When ¢ = 1, we have t = Ry = £y, ug = 0 or e,
and for ¢ > 1,

i+t
u; > 4y — p;—
When ¢ > 1, we have
N Y e A A Y
Meanwhile,
w < l;— R + e Pz+t—(d—1)R¢+de<p(d—2)+t+de<

d = d b
hence u;! € Z,;.
For any 0 < k < j — 1, we have

O<e(j—t)+dt—k)=d(j—k)+t—j < (d—1)j+p—d(d—1) <p,
which means that p | (d_le(j —t)+ t) o Hence h,, ;. € Z). O
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